







#### INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 Tel.: (34) 91 302 04 40

28033 Madrid (Spain)

direccion.ietcc@csic.es

https://dit.ietcc.csic.es

# **European Technical** Assessment

ETA 14/0374 of 21/02/2022

English translation prepared by IETcc. Original version in Spanish language

#### **General Part**

**Technical Assessment Body issuing** the ETA designated according to Art. 29 of Regulation (EU) 305/2011

Trade name of the construction product

Product family to which the construction product belongs Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Anchor Stud concrete screw

Concrete screw of sizes 7.5, 10.5, 12.5, 14.2 and 16.5 for use in cracked and non-cracked concrete.

Manufacturer

A notice from Innopro Ltd. The OEM manufacturer's info was deleted for commercial reasons. Please contact our office for the original: info@innopro.co.il

Manufacturing plants

A notice from Innopro Ltd. The OEM manufacturer's info was deleted for commercial reasons. Please contact our office for the original: info@innopro.co.il

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

This ETA replaces

22 pages including 4 annexes which form an integral part of this assessment.

European Technical Assessment EAD 330232-01-0601 "Mechanical Fasteners for use in concrete". ed. December 2019

ETA 14/0374 version 2 issued on 08/03/2019

Page 2 of European Technical Assessment ETA 14/0374 version 3 of 21/02/2022

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

#### SPECIFIC PART

#### 1. Technical description of the product

The Sissy Stud concrete screw is an anchor made of carbon steel. The anchor is made in sizes 7.5, 10.5. 12.5, 14.2 and 16.5, and is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product and its installation description are shown in annexes A.

# 2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means to choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3. Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                | Performance           |
|-----------------------------------------------------------------------------------------|-----------------------|
| Static or quasi static actions                                                          | See annexes C1 to C5  |
| Essential characteristic and displacements for seismic performance categories C1 and C2 | See annexes C6 and C7 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                  |
|--------------------------|----------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for class A1 |
| Resistance to fire       | See annex D                                  |

# 4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V of Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

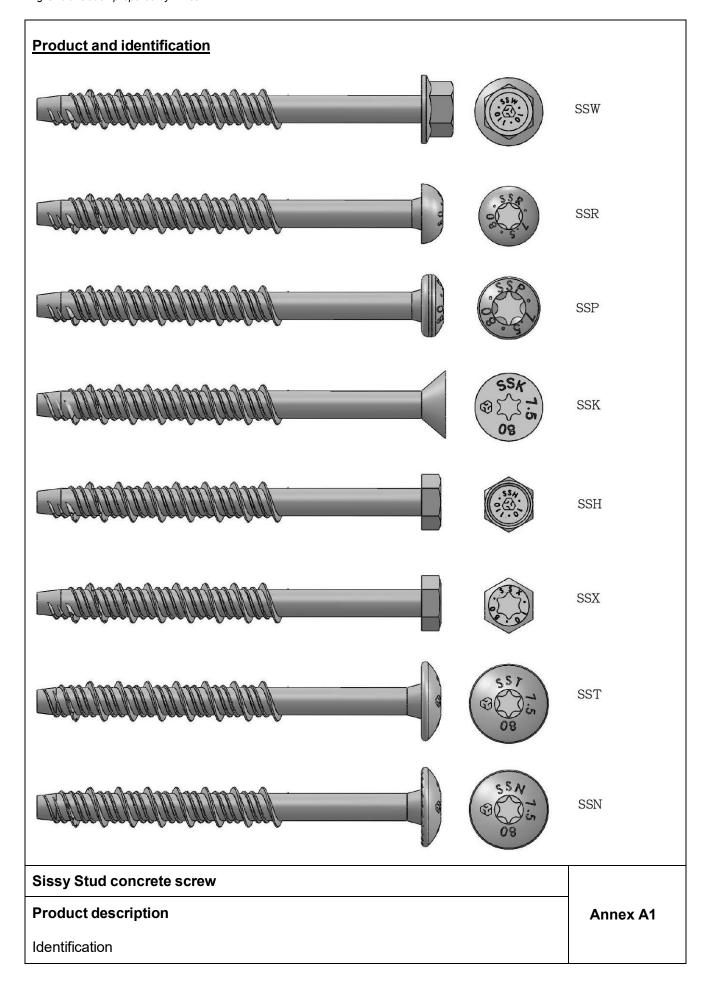
English translation prepared by IETcc

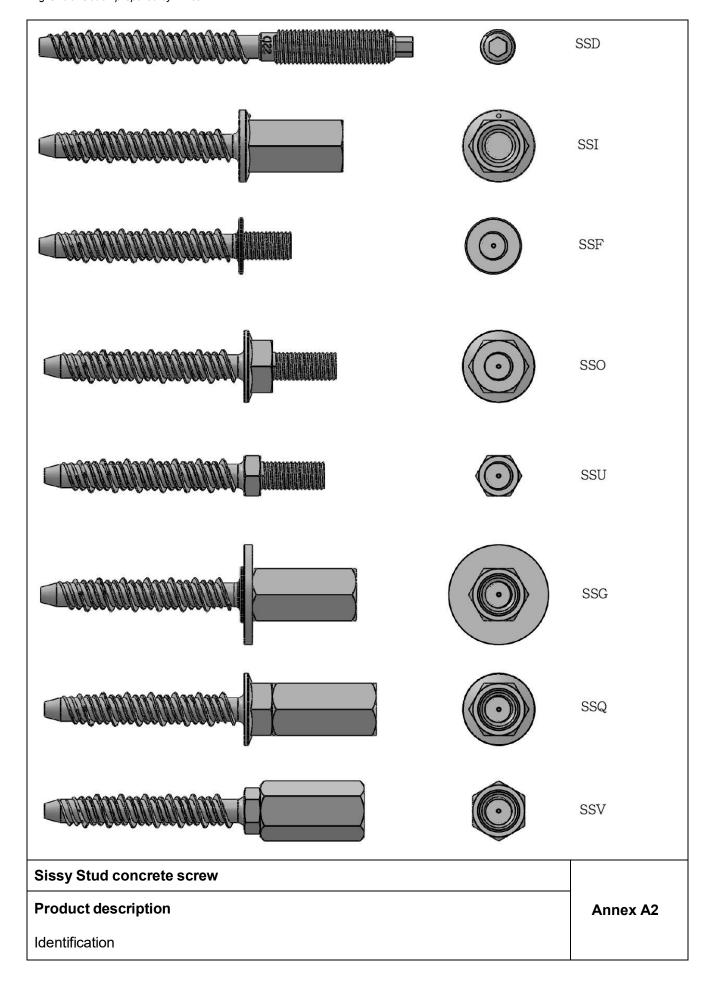
5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

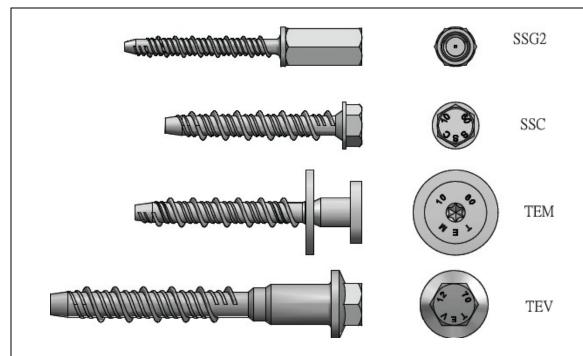


Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS





C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 21st of February 2022


Firmado por CASTILLO TALAVERA ANGEL - DNI 52507605P Fecha: 22/02/2022 07:34 57 CET

Director IETcc-CSIC





English translation prepared by IETcc



Marking/Identification on anchor:

- Company logo
- Outer diameter
- Length
- Anchor type:

|   | <b>3</b> 1                              |      |
|---|-----------------------------------------|------|
| 0 | Hex head with washer                    | SSW  |
| 0 | Round head                              | SSR  |
| 0 | Pan head                                | SSP  |
| 0 | Countersunk head                        | SSK  |
| 0 | Hex head                                | SSH  |
| 0 | Hex head, hexalobular recess            | SSX  |
| 0 | Truss head                              | SST  |
| 0 | Truss head with underhead ribs          | SSN  |
| 0 | Connection thread with hexagon drive    | SSD  |
| 0 | Internal thread                         | SSI  |
| 0 | Flat washer head with connection thread | SSF  |
| 0 | Hex washer head with connection thread  | SSO  |
| 0 | Hex head with connection thread         | SSU  |
| 0 | SSF flex with coupler nut               | SSG  |
| 0 | SSO flex with coupler nut               | SSQ  |
| 0 | SSU flex with coupler nut               | SSV  |
| 0 | SSG flex without washer                 | SSG2 |
| 0 | Hexagon head with bevelled shoulder     | SSC  |
| 0 | Special head with TEM style             | TEM  |
| 0 | Special head with TEV style             | TEV  |
|   |                                         |      |

| Sissy Stud concrete screw |          |
|---------------------------|----------|
| Product description       | Annex A3 |
| Identification            |          |

# Table A1: Materials

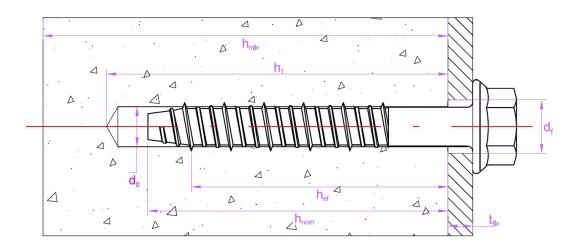
| Item | Designation | Sissy Stud concrete screw                            |  |  |  |  |  |
|------|-------------|------------------------------------------------------|--|--|--|--|--|
| 1    | Anchor Body | Carbon steel wire rod cold forged. Allowed coatings: |  |  |  |  |  |

| Sissy Stud concrete screw |          |
|---------------------------|----------|
| Product description       | Annex A4 |
| Identification            |          |

#### **Installed condition**

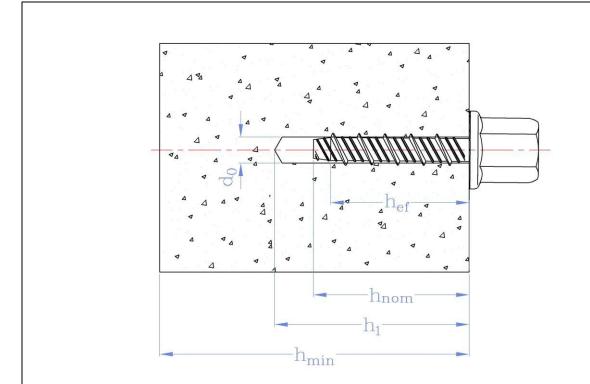
h<sub>ef</sub>: Effective anchorage depth

h<sub>1</sub>: Depth of drilled hole

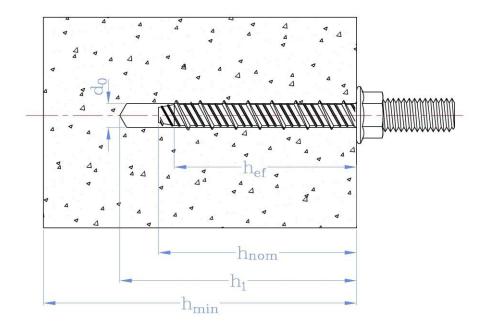

 $h_{\text{nom}}$ : Overall anchor embedment depth in the concrete

 $h_{\text{min}}$ : Minimum thickness of concrete member

t<sub>fix</sub>: Thickness of fixture


d<sub>0</sub>: Nominal diameter of drill bit

d<sub>f</sub>: Diameter of clearance hole in fixture




Drawing A1. Installed condition for anchors SSW, SSR, SSP, SSK, SSH, SSX, SST, SSN and SSC.

| Sissy Stud concrete screw |          |
|---------------------------|----------|
| Product description       | Annex A5 |
| Installed condition       |          |



**Drawing A2.** Installed condition for anchors SSD, SSI, SSF, SSO, SSU, SSG, SSQ, SSV, SSG2, TEM and TEV.



**Drawing A3.** Installed condition for anchors SSD, SSI, SSF, SSO, SSU, SSG, SSQ, SSV, SSG2, TEM and TEV.

| Sissy Stud concrete screw |          |
|---------------------------|----------|
| Product description       | Annex A6 |
| Installed condition       |          |

#### Intended use

#### **Anchorages subjected to:**

- Static or quasi static loads: all sizes and embedment depths.
- Seismic actions for performances C1 and C2 as per table bellow

| Size 7.5         |    | 10. | .5 | 12.5 |    | 14.2 |    | 16.5 |     |    |          |
|------------------|----|-----|----|------|----|------|----|------|-----|----|----------|
| h <sub>nom</sub> | 40 | 55  | 50 | 60   | 60 | 70   | 85 | 75   | 105 | 75 | 110      |
| C1               |    |     |    | ✓    |    |      | ✓  |      |     |    | <b>✓</b> |
| C2               |    |     |    |      |    |      | ✓  |      |     |    | <b>√</b> |

#### Base materials:

- Reinforced and unreinforced normal weight concrete without fibers according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and uncracked concrete.

#### **Use conditions (environmental conditions):**

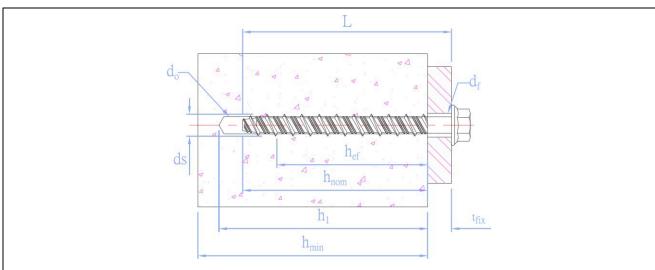
- The anchor shall be used in dry internal conditions.
- The anchor may be used for anchorages with requirements related to resistance to fire.

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be attached. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static loads are designed for design Method A in accordance with EN 1992-4:2018
- Anchorages under seismic actions are designed in accordance with EN 1992-4:2018. Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastening in stand-off installation or with grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.
- Shear assessment only covers the shear force induced by the fixed piece, i.e. the piece located between the anchor head and the concrete block (piece contained in t<sub>fix</sub>, see Drawing A1).

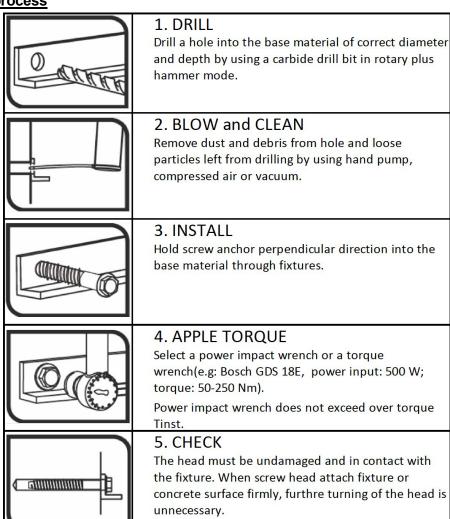
#### Installation:

- Hammer drilling only.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture, as it is shown in Drawing A1, and it must not be damaged.


| Sissy Stud concrete screw |          |
|---------------------------|----------|
| Intended use              | Annex B1 |
| Specifications            |          |

# Table B1: Installation parameters

| Installation parameters |                                                 |      | Performance |       |         |      |         |      |      |
|-------------------------|-------------------------------------------------|------|-------------|-------|---------|------|---------|------|------|
|                         |                                                 |      |             | 7.5   | SS 10.5 |      | SS 12.5 |      |      |
| h <sub>nom</sub>        | Overall anchor embedment depth in the concrete: | [mm] | 40          | 55    | 50      | 60   | 60      | 70   | 85   |
| d <sub>0</sub>          | Nominal diameter of drill bit:                  | [mm] |             | 6     | 8       | 3    |         | 10   |      |
| df                      | Diameter of clearance hole in fixture:          | [mm] |             | 9 12  |         |      | 14      |      |      |
| ds                      | Outer diameter of the thread                    | [mm] | 7           | 7.5   | 10.5    |      | 12.5    |      |      |
| h <sub>min</sub>        | Minimum thickness of concrete member:           | [mm] | 100         | 100   | 100     | 100  | 100     | 105  | 130  |
| h <sub>1</sub>          | Depth of drilled hole:                          | [mm] | 50          | 65    | 60      | 70   | 70      | 85   | 100  |
| h <sub>ef</sub>         | Effective anchorage depth:                      | [mm] | 29          | 42    | 37      | 45   | 44      | 52   | 65   |
| Tins                    | Installation torque                             | [Nm] | ,           | 15 25 |         |      | 50      |      |      |
| t <sub>fix</sub>        | Thickness of fixture                            | [mm] | L-40        | L-55  | L-50    | L-60 | L-60    | L-70 | L-85 |
| Smin                    | Minimum allowable spacing:                      | [mm] | 35          | 45    | 35      | 50   | 50      | 60   | 70   |
| C <sub>min</sub>        | Minimum allowable edge distance:                | [mm] | 35          | 45    | 35      | 50   | 40      | 60   | 60   |


| Ineta                 | Ilation parameters                              |      |             | Perf     | ormance |       |  |
|-----------------------|-------------------------------------------------|------|-------------|----------|---------|-------|--|
| motanation paramotors |                                                 |      | SS          | 14.2     | SS 16.5 |       |  |
| h <sub>nom</sub>      | Overall anchor embedment depth in the concrete: | [mm] | 75          | 105      | 75      | 110   |  |
| $d_0$                 | Nominal diameter of drill bit:                  | [mm] | ,           | 12       | 14      |       |  |
| d <sub>f</sub>        | Diameter of clearance hole in fixture:          | [mm] | 16          |          | 18      |       |  |
| ds                    | Outer diameter of the thread                    | [mm] | 14.2 16.5   |          |         | i     |  |
| h <sub>min</sub>      | Minimum thickness of concrete member:           | [mm] | 120 170 120 |          | 120     | 175   |  |
| h <sub>1</sub>        | Depth of drilled hole:                          | [mm] | 90          | 120      | 90      | 130   |  |
| h <sub>ef</sub>       | Effective anchorage depth:                      | [mm] | 57          | 82       | 56      | 86    |  |
| Tins                  | Installation torque                             | [Nm] | (           | 60       | 80      |       |  |
| t <sub>fix</sub>      | Thickness of fixture                            | [mm] | L-75        | L-105    | L-75    | L-110 |  |
| Smin                  | Minimum allowable spacing:                      | [mm] | 70          | 70       | 75      | 100   |  |
| Cmin                  | Minimum allowable edge distance:                | [mm] | 45          | 45 45 45 |         |       |  |

| Sissy Stud concrete screw                          |          |
|----------------------------------------------------|----------|
| Performances                                       | Annex B2 |
| Installation parameters and installation procedure |          |



Drawing B1. Installed condition for anchors SSW, SSR, SSP, SSK, SSH, SSX, SST, SSN and SSC.

#### **Installation process**



# Performances Installation parameters and installation procedure Annex B3

## Table C1: Characteristic values to tension loads of design method A

| Characteristic values of resistance to tension loads of |                                                                 |      | Performance           |      |      |          |      |        |      |  |
|---------------------------------------------------------|-----------------------------------------------------------------|------|-----------------------|------|------|----------|------|--------|------|--|
| design                                                  | method A                                                        |      | SS                    | 7.5  | SS   | 10.5     |      | SS 12. | 5    |  |
| h <sub>nom</sub>                                        | Overall anchor embedment depth in the concrete:                 | [mm] | 40                    | 55   | 50   | 60       | 60   | 70     | 85   |  |
| Tension                                                 | n loads: steel failure                                          |      |                       |      |      |          |      |        |      |  |
| $N_{Rk,s}$                                              | Tension steel characteristic resistance:                        | [kN] | 18                    | 3.7  | 32   | 2.7      |      | 51.2   |      |  |
| γMs                                                     | Partial safety factor: 1)                                       | [-]  | 1                     | .5   | 1    | .5       |      | 1.5    |      |  |
| Tension                                                 | loads: pull-out failure in concrete                             |      |                       |      |      |          |      |        |      |  |
| N <sub>Rk,p,ucr</sub>                                   | Tension characteristic resistance in C20/25 uncracked concrete: | [kN] | 6.0                   | 9.0  | 2)   | 12.0     | 2)   | 20     | 2)   |  |
| Ψc,ucr                                                  | C30/37                                                          | [-]  | 1.16                  | 1.22 | 1.16 | 1.08     | 1.15 | 1.04   | 1.09 |  |
| Ψc,ucr                                                  | C40/45                                                          | [-]  | 1.28                  | 1.41 | 1.28 | 1.15     | 1.27 | 1.07   | 1.15 |  |
| Ψc,ucr                                                  | C50/60                                                          | [-]  | 1.39                  | 1.55 | 1.39 | 1.19     | 1.37 | 1.09   | 1.21 |  |
| N <sub>Rk,p,cr</sub>                                    | Tension characteristic resistance in C20/25 cracked concrete:   | [kN] | 3.0                   | 6.0  | 6.5  | 9.0      | 2)   | 12     | 2)   |  |
| Ψc,cr                                                   | C30/37                                                          | [-]  | 1.17                  | 1.22 | 1.16 | 1.22     | 1.14 | 1.22   | 1.18 |  |
| Ψc,cr                                                   | C40/45                                                          | [-]  | 1.30                  | 1.41 | 1.29 | 1.41     | 1.25 | 1.41   | 1.33 |  |
| Ψc,cr                                                   | C50/60                                                          | [-]  | 1.42                  | 1.55 | 1.40 | 1.55     | 1.34 | 1.55   | 1.46 |  |
| Tension                                                 | loads: concrete cone and splitting failure                      |      |                       |      |      |          |      |        |      |  |
| γins                                                    | Installation safety factor: 1)                                  | [-]  | 1.2                   | 1.2  | 1.2  | 1.2      | 1.2  | 1.2    | 1.0  |  |
| h <sub>ef</sub>                                         | Effective embedment depth:                                      | [mm] | 29                    | 42   | 37   | 45       | 44   | 52     | 65   |  |
| k <sub>ucr,N</sub>                                      | Factor for uncracked concrete:                                  | [-]  | 11.0                  |      |      |          |      |        |      |  |
| k <sub>cr,N</sub>                                       | Factor for cracked concrete:                                    | [-]  | 7.7                   |      |      |          |      |        |      |  |
| S <sub>cr,N</sub>                                       | Critical spacing:                                               | [mm] | 3.0 x h <sub>ef</sub> |      |      |          |      |        |      |  |
| C <sub>cr,N</sub>                                       | Critical edge distance:                                         | [mm] | 1.5 x h <sub>ef</sub> |      |      |          |      |        |      |  |
| S <sub>cr,sp</sub>                                      | Critical spacing (splitting):                                   | [mm] | 3.0 x h <sub>ef</sub> |      |      |          |      |        |      |  |
| C <sub>cr,sp</sub>                                      | Critical edge distance (splitting):                             | [mm] |                       |      |      | 1.5 x h∈ | ef   |        |      |  |

<sup>1)</sup> In absence of other national regulations 2) Pull-out failure is not decisive

| Sissy Stud concrete screw               |          |
|-----------------------------------------|----------|
| Performances                            |          |
| Characteristic values for tension loads | Annex C1 |

| Characte             | Performance                                                     |      |                       |      |      |      |  |
|----------------------|-----------------------------------------------------------------|------|-----------------------|------|------|------|--|
| Cilaracti            | eristic values of resistance to tension loads of design meth    | ou A | SS 14.2               |      | SS   | 16.5 |  |
| h <sub>nom</sub>     | Overall anchor embedment depth in the concrete:                 | [mm] | 75                    | 105  | 75   | 110  |  |
|                      | loads: steel failure                                            |      |                       |      |      |      |  |
| $N_{Rk,s}$           | Tension steel characteristic resistance:                        | [kN] | 80                    | ).6  | 11:  | 5.9  |  |
| γMs                  | Partial safety factor: 1)                                       | [-]  | 1                     | .5   | 1    | .5   |  |
| Tension              | loads: pull-out failure in concrete                             |      |                       |      |      |      |  |
| $N_{Rk,p,ucr}$       | Tension characteristic resistance in C20/25 uncracked concrete: | [kN] | 2)                    | 2)   | 2)   | 40   |  |
| Ψc,ucr               | C30/37                                                          | [-]  | 1.10                  | 1.09 | 1.13 | 1.04 |  |
| Ψc,ucr               | C40/45                                                          | [-]  | 1.17                  | 1.16 | 1.24 | 1.07 |  |
| Ψ <sub>c,ucr</sub>   | C50/60                                                          | [-]  | 1.23                  | 1.21 | 1.33 | 1.09 |  |
| N <sub>Rk,p,cr</sub> | Tension characteristic resistance in C20/25 cracked concrete:   | [kN] | 2)                    | 2)   | 2)   | 30   |  |
| Ψc,cr                | C30/37                                                          | [-]  | 1.11                  | 1.08 | 1.14 | 1.12 |  |
| Ψc,cr                | C40/45                                                          | [-]  | 1.19                  | 1.15 | 1.26 | 1.23 |  |
| Ψc,cr                | C50/60                                                          | [-]  | 1.26                  | 1.20 | 1.35 | 1.30 |  |
| Tension              | loads: concrete cone and splitting failure                      |      |                       |      |      |      |  |
| $\gamma_{ins}$       | Installation safety factor: 1)                                  | [-]  | 1.2                   | 1.0  | 1.2  | 1.0  |  |
| h <sub>ef</sub>      | Effective embedment depth:                                      | [mm] | 57                    | 82   | 56   | 86   |  |
| k <sub>ucr,N</sub>   | Factor for uncracked concrete:                                  | [-]  | 11.0                  |      |      |      |  |
| k <sub>cr,N</sub>    | Factor for cracked concrete:                                    | [-]  | 7.7                   |      |      |      |  |
| S <sub>cr,N</sub>    | Critical spacing:                                               | [mm] | 3.0 x h <sub>ef</sub> |      |      |      |  |
| C <sub>cr,N</sub>    | Critical edge distance:                                         | [mm] | 1.5 x h <sub>ef</sub> |      |      |      |  |
| S <sub>cr,sp</sub>   | Critical spacing (splitting):                                   | [mm] | 3.0 x h <sub>ef</sub> |      |      |      |  |
| C <sub>cr,sp</sub>   | Critical edge distance (splitting):                             | [mm] | 1.5 x h <sub>ef</sub> |      |      |      |  |

<sup>1)</sup> In absence of other national regulations 2) Pull-out failure is not decisive

| Sissy Stud concrete screw  Performances | Annex C2 |
|-----------------------------------------|----------|
| Characteristic values for tension loads |          |

## Table C2: Displacements under tension loads for Sissy Stud concrete screw

| Characteristic values of displacements under tension |                                                              |        | Performance |      |         |      |         |      |      |  |  |
|------------------------------------------------------|--------------------------------------------------------------|--------|-------------|------|---------|------|---------|------|------|--|--|
| load                                                 | s of design method A                                         |        | SS 7.5      |      | SS 10.5 |      | SS 12.5 |      | 5    |  |  |
| h <sub>nom</sub>                                     | Overall anchor embedment depth in the concrete:              | [mm]   | 40          | 55   | 50      | 60   | 60      | 70   | 85   |  |  |
| Disp                                                 | Displacements under tension loads in uncracked concrete      |        |             |      |         |      |         |      |      |  |  |
| N                                                    | Service tension load in uncracked concrete C20/25 to C50/60: | [kN]   | 2.4         | 3.6  | 4.4     | 4.8  | 5.7     | 9.5  | 12.3 |  |  |
| $\delta_{N0}$                                        | Short term displacement under tension loads:                 | [mm]   | 0.06        | 0.40 | 0.08    | 0.40 | 0.09    | 0.40 | 0.12 |  |  |
| δ <sub>N∞</sub>                                      | Long term displacement under tension loads:                  | [mm]   | 0.30        | 1.00 | 0.35    | 1.10 | 0.40    | 1.40 | 0.55 |  |  |
| Disp                                                 | lacements under tension loads in cracked cor                 | ncrete |             |      |         |      |         |      |      |  |  |
| N                                                    | Service tension load in cracked concrete C20/25 to C50/60:   | [kN]   | 1.2         | 2.4  | 2.5     | 3.6  | 4.0     | 5.7  | 8.6  |  |  |
| $\delta_{N0}$                                        | Short term displacement under tension loads:                 | [mm]   | 0.10        | 0.60 | 0.12    | 0.70 | 0.15    | 0.50 | 0.17 |  |  |
| δ <sub>N∞</sub>                                      | Long term displacement under tension loads:                  | [mm]   | 1.10        | 1.40 | 1.20    | 1.20 | 1.25    | 1.40 | 0.55 |  |  |

| Chai             | Characteristic values of displacements under tension loads of |      |      |      | Performance |      |  |  |  |  |
|------------------|---------------------------------------------------------------|------|------|------|-------------|------|--|--|--|--|
| desi             | design method A                                               |      |      | 14.2 | SS          | 16.5 |  |  |  |  |
| h <sub>nom</sub> | Overall anchor embedment depth in the concrete:               | [mm] | 75   | 105  | 75          | 110  |  |  |  |  |
|                  | Displacements under tension loads in uncracked concr          | ete  |      |      |             |      |  |  |  |  |
| N                | Service tension load in uncracked concrete C20/25 to C50/60:  | [kN] | 11.3 | 18.1 | 8.2         | 19.0 |  |  |  |  |
| δη0              | Short term displacement under tension loads:                  | [mm] | 0.08 | 0.10 | 0.10        | 0.90 |  |  |  |  |
| δ <sub>N∞</sub>  | Long term displacement under tension loads:                   | [mm] | 0.40 | 0.40 | 0.45        | 1.40 |  |  |  |  |
|                  | Displacements under tension loads in cracked concre           | te   |      |      |             |      |  |  |  |  |
| N                | Service tension load in cracked concrete C20/25 to C50/60:    | [kN] | 7.7  | 13.3 | 5.7         | 11.9 |  |  |  |  |
| δη0              | Short term displacement under tension loads:                  | [mm] | 0.13 | 0.15 | 0.20        | 0.60 |  |  |  |  |
| δ <sub>N∞</sub>  | Long term displacement under tension loads:                   | [mm] | 1.25 | 1.35 | 1.32        | 1.20 |  |  |  |  |

| Sissy Stud concrete screw        |          |
|----------------------------------|----------|
| Performances                     | Annex C3 |
| Displacement under tension loads |          |

Table C3: Characteristic values to shear loads of design method A

|                                                    |                                                 |      |     | Performance |         |     |         |      |     |  |  |  |
|----------------------------------------------------|-------------------------------------------------|------|-----|-------------|---------|-----|---------|------|-----|--|--|--|
| Characteristic values of resistance to shear loads |                                                 |      | SS  | 7.5         | SS 10.5 |     | SS 12.5 |      |     |  |  |  |
| h <sub>nom</sub>                                   | Overall anchor embedment depth in the concrete: | [mm] | 40  | 55          | 50      | 60  | 60      | 70   | 85  |  |  |  |
| Shear                                              | r loads: steel failure without lever arm        |      |     |             |         |     |         |      |     |  |  |  |
| $V_{Rk,s}$                                         | Shear steel characteristic resistance:          | [kN] | 9.3 | 7.5         | 16      | .3  |         | 25.6 |     |  |  |  |
| <b>k</b> <sub>7</sub>                              | k <sub>7</sub> factor:                          |      | 0.8 |             | 0.      | 8   |         | 0.8  |     |  |  |  |
| γMs                                                | Partial safety factor: *)                       | [-]  | 1.2 | 25          | 1.2     | 25  |         |      |     |  |  |  |
| Shear                                              | r loads: steel failure with lever arm           |      |     |             |         |     |         |      |     |  |  |  |
| $M^0$ Rk,s                                         | Characteristic bending moment:                  | [Nm] | 15. | .2          | 35      | .3  | 69.3    |      |     |  |  |  |
| γMs                                                | Partial safety factor: *)                       | [-]  | 1.2 | 25          | 1.2     | 25  | 1.25    |      |     |  |  |  |
| Shear                                              | r loads: concrete pryout failure                |      |     |             |         |     |         |      |     |  |  |  |
| <b>k</b> 8                                         | k <sub>8</sub> factor:                          | [-]  | 0.8 | 1.0         | 1.2     | 1.0 | 1.0     | 1.0  | 1.0 |  |  |  |
| γinst                                              | Installation safety factor: *)                  | [-]  | 1.0 | 1.5         | 1.0     | 1.5 | 1.0     | 1.5  | 1.0 |  |  |  |
| Shear                                              | r loads: concrete edge failure                  |      |     |             |         |     |         |      |     |  |  |  |
| l <sub>f</sub>                                     | Effective anchorage depth under shear loads:    | [mm] | 29  | 42          | 37      | 45  | 44      | 52   | 65  |  |  |  |
| d <sub>nom</sub>                                   | Nominal outer diameter of screw:                | [mm] | 6   | 6           | 8       | 8   | 10      | 10   | 10  |  |  |  |
| γinst                                              | Installation safety factor: *)                  | [-]  | 1.2 | 1.5         | 1.2     | 1.5 | 1.2     | 1.5  | 1.0 |  |  |  |

<sup>\*)</sup> In absence of other national regulations

| Characteristic values of resistance to sheer leads |                                                 |      | Performance |      |       |      |  |  |  |
|----------------------------------------------------|-------------------------------------------------|------|-------------|------|-------|------|--|--|--|
| Characteristic values of resistance to shear loads |                                                 |      | SS          | 14.2 | SS    | 16.5 |  |  |  |
| h <sub>nom</sub>                                   | Overall anchor embedment depth in the concrete: | [mm] | 75          | 105  | 75    | 110  |  |  |  |
| Shear                                              | loads: steel failure without lever arm          |      |             |      |       |      |  |  |  |
| $V_{Rk,s}$                                         | Shear steel characteristic resistance:          | [kN] | 40          | ).3  | 57    | 7.9  |  |  |  |
| <b>k</b> <sub>7</sub>                              | k <sub>7</sub> factor:                          |      | 0           | .8   | 0     | .8   |  |  |  |
| γMs                                                | Partial safety factor: *)                       | [-]  | 1.:         | 25   | 1.    | 25   |  |  |  |
| Shear                                              | loads: steel failure with lever arm             |      |             |      |       |      |  |  |  |
| $M^0$ Rk,s                                         | Characteristic bending moment:                  | [Nm] | 13          | 7.1  | 235.9 |      |  |  |  |
| γMs                                                | Partial safety factor: *)                       | [-]  | 1           | 25   | 1.25  |      |  |  |  |
| Shear                                              | loads: concrete pryout failure                  |      |             |      |       |      |  |  |  |
| <b>k</b> 8                                         | k <sub>8</sub> factor:                          | [-]  | 1           | .5   | 1.6   | 2.0  |  |  |  |
| γinst                                              | Installation safety factor: *)                  | [-]  | 1           | 25   | 1.0   | 1.5  |  |  |  |
| Shear                                              | loads: concrete edge failure                    |      |             |      |       |      |  |  |  |
| Æ                                                  | Effective anchorage depth under shear loads:    | [mm] | 57          | 82   | 56    | 86   |  |  |  |
| d <sub>nom</sub>                                   | Nominal outer diameter of screw:                | [mm] | 12 12       |      | 14    | 14   |  |  |  |
| γinst                                              | Installation safety factor: *)                  | [-]  | 1.2         | 1.0  | 1.2   | 1.5  |  |  |  |

<sup>\*)</sup> In absence of other national regulations

| 9Sissy Stud concrete screw            |          |
|---------------------------------------|----------|
| Performances                          | Annex C4 |
| Characteristic values for shear loads |          |

#### Table C4: Displacements under shear loads

| Characteristic values of displacements under shear |                                                                        |        | Performances |         |      |         |      |      |      |
|----------------------------------------------------|------------------------------------------------------------------------|--------|--------------|---------|------|---------|------|------|------|
| loads of design method A                           |                                                                        | SS     | 7.5          | SS 10.5 |      | SS 12.5 |      | 5    |      |
| h <sub>nom</sub>                                   | Overall anchor embedment depth in the concrete:                        | [mm]   | 40           | 55      | 50   | 60      | 60   | 70   | 85   |
| Disp                                               | lacements under shear loads in uncracked cor                           | ncrete |              |         |      |         |      |      |      |
| ٧                                                  | Service shear load in cracked and uncracked concrete C20/25 to C50/60: | [kN]   | 3.0          | 3.6     | 4.4  | 4.8     | 5.7  | 9.5  | 12.3 |
| $\delta_{V0}$                                      | Short term displacement under shear loads:                             | [mm]   | 0.47         | 0.4     | 0.50 | 0.40    | 0.40 | 0.40 | 0.80 |
| δ∨∞                                                | Long term displacement under shear loads:                              | [mm]   | 0.70         | 1.0     | 0.75 | 1.10    | 0.60 | 1.40 | 1.20 |
| Disp                                               | lacements under shear loads in cracked concr                           | ete    |              |         |      |         |      |      |      |
| ٧                                                  | Service shear load in cracked and uncracked concrete C20/25 to C50/60: | [kN]   | 2.1          | 2.4     | 3.1  | 3.6     | 4.0  | 5.7  | 8.6  |
| δνο                                                | Short term displacement under shear loads:                             | [mm]   | 0.40         | 0.60    | 0.45 | 0.70    | 0.50 | 0.50 | 0.6  |
| δ∨∞                                                | Long term displacement under shear loads:                              | [mm]   | 0.60         | 1.40    | 0.67 | 1.20    | 0.75 | 1.40 | 0.90 |

| Char             | Characteristic values of displacements under shear loads of design     |      |         | Performances |         |      |  |
|------------------|------------------------------------------------------------------------|------|---------|--------------|---------|------|--|
| meth             | od A                                                                   | _    | SS 14.2 |              | SS 16.5 |      |  |
| h <sub>nom</sub> | Overall anchor embedment depth in the concrete:                        | [mm] | 75      | 105          | 75      | 110  |  |
| Disp             | lacements under shear loads in uncracked concrete                      |      |         |              |         |      |  |
| ٧                | Service shear load in cracked and uncracked concrete C20/25 to C50/60: | [kN] | 8.4     | 17.4         | 8.2     | 19.0 |  |
| $\delta_{V0}$    | Short term displacement under shear loads:                             | [mm] | 1.00    | 1.10         | 0.55    | 0.90 |  |
| δ∨∞              | Long term displacement under shear loads:                              | [mm] | 1.50    | 1.80         | 0.82    | 1.4  |  |
| Disp             | lacements under shear loads in cracked concrete                        |      |         |              |         |      |  |
| ٧                | Service shear load in cracked and uncracked concrete C20/25 to C50/60: | [kN] | 5.9     | 12.2         | 5.7     | 11.9 |  |
| $\delta_{V0}$    | Short term displacement under shear loads:                             | [mm] | 0.85    | 1.00         | 0.50    | 0.60 |  |
| δ∨∞              | Long term displacement under shear loads:                              | [mm] | 1.20    | 1.50         | 0.75    | 1.20 |  |

#### Information for design of anchorages under shear loads:

The conditions given in EN 1992-4:2018 are not fulfilled because the diameter of the clearance hole in the fixture (see "Installation parameters" table B1) is greater than the values given in EN 1992-4 Table 6.1 for the corresponding diameter of the anchor. Therefore, condition EN 1992-4 6.2.2.2(1) a) 2) is not valid for shear steel failure for anchors groups (n > 1). Consequently, it is assumed that for the proof of steel failure, only two anchors of a group are effective and take up shear forces."

| Sissy Stud concrete screw       |          |
|---------------------------------|----------|
| Performances                    | Annex C5 |
| Displacements under shear loads |          |

## Table C5: Essential characteristics for seismic performance category C1

|                                   |                           |                             |      | Pe   | Performances |       |  |  |
|-----------------------------------|---------------------------|-----------------------------|------|------|--------------|-------|--|--|
| Essential o                       | characteristics for seism | nic performance category C  | 51   | 10.5 | 12.5         | 16.5  |  |  |
| h <sub>nom</sub>                  | Overall anchor embed      | ment depth in the concrete: | [mm] | 60   | 85           | 110   |  |  |
| Steel failur                      | re for tension and shear  | loads                       |      |      |              |       |  |  |
| N <sub>Rk,s,C1</sub>              | Characteristic resistan   | ce:                         | [kN] | 32.7 | 51.2         | 115.9 |  |  |
| γMs                               | Partial safety factor 1): |                             | []   | 1.5  | 1.5          | 1.5   |  |  |
| V <sub>Rk,s,C1</sub>              | Characteristic resistan   | ce:                         | [kN] | 16.3 | 24.3         | 57.9  |  |  |
| γMs                               | Partial safety factor 1): |                             | []   | 1.25 | 1.25         | 1.25  |  |  |
| Pull out fai                      | lure                      |                             |      |      |              |       |  |  |
| N <sub>Rk,p,C1</sub>              | Characteristic resistan   | ce in cracked concrete:     | [kN] | 9.0  | 24.0         | 30.0  |  |  |
| γinst                             | Robustness:               |                             | []   | 1.8  | 1.8          | 1.5   |  |  |
| Concrete of                       | cone failure              |                             |      |      |              |       |  |  |
| h <sub>ef</sub>                   | Effective embedment of    | depth:                      | [mm] | 45   | 65           | 86    |  |  |
| S <sub>cr,N</sub>                 | Concrete                  | Spacing:                    | [mm] | 135  | 195          | 258   |  |  |
| C <sub>cr,N</sub>                 | cone failure              | Edge distance:              | [mm] | 67   | 98           | 129   |  |  |
| γinst                             | Installation safety facto | or:                         | []   | 1.2  | 1.0          | 1.0   |  |  |
| Concrete p                        | ory-out failure           |                             |      |      |              |       |  |  |
| <b>k</b> 8                        | Pry-out factor:           |                             | []   | 1.0  | 0.9          | 1.5   |  |  |
| γinst                             | Installation safety facto | or:                         | []   | 1.2  | 1.0          | 1.0   |  |  |
| Concrete e                        | edge failure              |                             |      |      |              |       |  |  |
| $\ell_{\text{f}} = h_{\text{ef}}$ | Effective length of fast  | ener under shear loads:     | [mm] | 45   | 65           | 86    |  |  |
| d <sub>nom</sub>                  | Nominal outer diamete     | er of screw:                | [mm] | 8    | 10           | 14    |  |  |
| γinst                             | Installation safety facto | or:                         | []   | 1.0  | 1.0          | 1.0   |  |  |

<sup>1)</sup> In absence of other national regulations

| Sissy Stud concrete screw                                     |          |
|---------------------------------------------------------------|----------|
| Performances                                                  | Annex C6 |
| Essential characteristics for seismic performance category C1 |          |

#### Table C6: Essential characteristics for seismic performance category C2

|                              |                                                   |      | Performances |       |  |
|------------------------------|---------------------------------------------------|------|--------------|-------|--|
| Essential cha                | rracteristics for seismic performance category C2 |      | 12.5         | 16.5  |  |
| h <sub>nom</sub>             | Overall anchor embedment depth in the concrete:   | [mm] | 85           | 110   |  |
| Steel failure f              | or tension and shear loads                        |      |              |       |  |
| N <sub>Rk,s,C2</sub>         | Characteristic resistance:                        | [kN] | 51.2         | 115.9 |  |
| γMs                          | Partial safety factor 1):                         | []   | 1.5          | 1.5   |  |
| V <sub>Rk,s,C2</sub>         | Characteristic resistance:                        | [kN] | 16.1         | 41.1  |  |
| γMs                          | Partial safety factor 1):                         | []   | 1.25         | 1.25  |  |
| Pull out failur              |                                                   |      |              |       |  |
| N <sub>Rk,p,C2</sub>         | Characteristic resistance in cracked concrete:    | [kN] | 11.0         | 9.6   |  |
| $\gamma$ inst                | Robustness:                                       | []   | 1.8          | 1.5   |  |
| Concrete con                 | e failure                                         |      |              |       |  |
| h <sub>ef</sub>              | Effective embedment depth:                        | [mm] | 65           | 86    |  |
| S <sub>cr,N</sub>            | Concrete Spacing:                                 | [mm] | 195          | 258   |  |
| C <sub>cr,N</sub>            | cone failure Edge distance:                       | [mm] | 98           | 129   |  |
| γinst                        | Installation safety factor:                       | []   | 1.0          | 1.0   |  |
| Concrete pry                 |                                                   |      |              |       |  |
| k <sub>8</sub>               | Pry-out factor:                                   | []   | 0.92         | 1.5   |  |
| γinst                        | Installation safety factor:                       | []   | 1.0          | 1.0   |  |
| Concrete edg                 | je failure                                        |      |              |       |  |
| $\ell_{f} = \mathbf{h}_{ef}$ | Effective length of fastener under shear loads:   | [mm] | 65           | 86    |  |
| d <sub>nom</sub>             | Nominal outer diameter of screw:                  | [mm] | 10.0         | 14.0  |  |
| γinst                        | Installation safety factor:                       | []   | 1.0          | 1.0   |  |
| Displacement                 | ts                                                |      |              |       |  |
| δ <sub>N,C2</sub> (DLS)      | Displacement at                                   | [mm] | 0.35         | 0.73  |  |
| $\delta_{V \; C2 \; (DLS)}$  | Damage Limitation State: <sup>2)</sup>            | [mm] | 5.16         | 5.67  |  |
| δ <sub>N,C2</sub> (ULS)      | Displacement at                                   | [mm] | 1.11         | 2.06  |  |
| δv,c2 (ULS)                  | Ultimate Limitation State: <sup>2)</sup>          | [mm] | 7.90         | 7.90  |  |

DLS: Damage Limitation State: see EN 1992-4, 2.2.1) ULS: Ultimate Limitation State: see EN 1992-4 2.2.1)

| Sissy Stud concrete screw                                     |          |
|---------------------------------------------------------------|----------|
| Performances                                                  | Annex C7 |
| Essential characteristics for seismic performance category C2 |          |

<sup>1)</sup> In absence of other national regulations

<sup>&</sup>lt;sup>2)</sup> The listed displacements represent mean values

# Table D1: Characteristic values to fire resistance

| Fire res                | Fire resistance duration = 30 minutes              |      |      | SS 10.5 | SS 12.5 | SS 16.5 |  |  |  |
|-------------------------|----------------------------------------------------|------|------|---------|---------|---------|--|--|--|
| Te                      | Tension loads, steel failure                       |      |      |         |         |         |  |  |  |
| N <sub>Rk,s,fi,30</sub> | Characteristic resistance                          | [kN] | 0.23 | 0.61    | 1.28    | 2.90    |  |  |  |
| Pu                      | Pull-out failure                                   |      |      |         |         |         |  |  |  |
| N <sub>Rk,p,fi,30</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 1.50 | 2.25    | 3.00    | 7.50    |  |  |  |
| Co                      | oncrete cone failure **)                           |      |      |         |         |         |  |  |  |
| N <sub>Rk,c,fi,30</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 2.06 | 2.45    | 3.51    | 12.35   |  |  |  |
| Sh                      | ear loads steel failure without lever arm          |      |      |         |         |         |  |  |  |
| V <sub>Rk,s,fi,30</sub> | Characteristic resistance                          | [kN] | 0.23 | 0.61    | 1.28    | 2.90    |  |  |  |
| Sh                      | Shear loads, steel failure with lever arm          |      |      |         |         |         |  |  |  |
| M <sub>Rk,s,fi,60</sub> | Characteristic bending resistance                  | [Nm] | 0.19 | 0.66    | 1.73    | 5.90    |  |  |  |

| Fire resis              | Fire resistance duration = 60 minutes              |      |      | SS 10.5 | SS 12.5 | SS 16.5 |  |  |
|-------------------------|----------------------------------------------------|------|------|---------|---------|---------|--|--|
| Ten                     | Tension loads, steel failure                       |      |      |         |         |         |  |  |
| N <sub>Rk,s,fi,60</sub> | Characteristic resistance                          | [kN] | 0.21 | 0.53    | 0.96    | 2.17    |  |  |
| Pull                    | -out failure                                       |      |      |         |         |         |  |  |
| N <sub>Rk,p,fi,60</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 1.50 | 2.25    | 3.00    | 7.50    |  |  |
| Con                     | crete cone failure **)                             |      |      |         |         |         |  |  |
| N <sub>Rk,c,fi,60</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 2.06 | 2.45    | 3.51    | 12.35   |  |  |
| Shea                    | ar loads, steel failure without lever arm          |      |      |         |         |         |  |  |
| V <sub>Rk,s,fi,60</sub> | Characteristic resistance                          | [kN] | 0.21 | 0.53    | 0.96    | 2.17    |  |  |
| Shea                    | Shear loads, steel failure with lever arm          |      |      |         |         |         |  |  |
| M <sub>Rk,s,fi,60</sub> | Characteristic bending resistance                  | [Nm] | 0.17 | 0.57    | 1.30    | 4.42    |  |  |

| Fire resi               | Fire resistance duration = 90 minutes              |      |      | SS 10.5 | SS 12.5 | SS 16.5 |  |  |  |
|-------------------------|----------------------------------------------------|------|------|---------|---------|---------|--|--|--|
| Ten                     | Tension loads, steel failure                       |      |      |         |         |         |  |  |  |
| N <sub>Rk,s,fi,90</sub> | Characteristic resistance                          | [kN] | 0.16 | 0.41    | 0.83    | 1.88    |  |  |  |
| Pull-out failure        |                                                    |      |      |         |         |         |  |  |  |
| N <sub>Rk,p,fi,90</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 1.50 | 2.25    | 3.00    | 7.50    |  |  |  |
| Con                     | crete cone failure **)                             |      |      |         |         |         |  |  |  |
| N <sub>Rk,c,fi,90</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 2.06 | 2.45    | 3.51    | 12.35   |  |  |  |
| Shea                    | ar loads, steel failure without lever arm          |      |      |         |         |         |  |  |  |
| V <sub>Rk,s,fi,90</sub> | Characteristic resistance                          | [kN] | 0.16 | 0.41    | 0.83    | 1.88    |  |  |  |
| Shea                    | Shear loads, steel failure with lever arm          |      |      |         |         |         |  |  |  |
| M <sub>Rk,s,fi,90</sub> | Characteristic bending resistance                  | [Nm] | 0.13 | 0.44    | 1.13    | 3.83    |  |  |  |

| Sissy Stud concrete screw                              |          |
|--------------------------------------------------------|----------|
| Performances Characteristic values for fire resistance | Annex D1 |

| Fire resis               | Fire resistance duration = 120 minutes             |      |      | SS 10.5 | SS 12.5 | SS 16.5 |  |
|--------------------------|----------------------------------------------------|------|------|---------|---------|---------|--|
| Tens                     | ion loads, steel failure                           |      |      |         |         |         |  |
| N <sub>Rk,s,fi,120</sub> | Characteristic resistance                          | [kN] | 0.12 | 0.33    | 0.64    | 1.45    |  |
| Pull-                    | Pull-out failure                                   |      |      |         |         |         |  |
| N <sub>Rk,p,fi,120</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 1,20 | 1.80    | 2.40    | 6.00    |  |
| Cond                     | crete cone failure **)                             |      |      |         |         |         |  |
| N <sub>Rk,c,fi,120</sub> | Character. resistance in concrete C20/25 to C50/60 | [kN] | 1.65 | 1.96    | 2.81    | 9.88    |  |
| Shear                    | r loads, steel failure without lever arm           |      |      |         |         |         |  |
| V <sub>Rk,s,fi,120</sub> | Characteristic resistance                          | [kN] | 0.12 | 0.33    | 0.64    | 1.45    |  |
| Shear                    | r loads, steel failure with lever arm              |      |      |         |         |         |  |
| M <sub>Rk,s,fi,120</sub> | Characteristic bending resistance                  | [Nm] | 0.10 | 0.35    | 0.87    | 2.95    |  |

| Spac              | Spacing and edge distances             |      |     | SS 10.5 | SS 12.5 | SS 16.5 |
|-------------------|----------------------------------------|------|-----|---------|---------|---------|
| S <sub>cr,N</sub> | Spacing                                | [mm] | 168 | 180     | 208     | 344     |
| Smin              | Minimum spacing                        | [mm] | 45  | 50      | 60      | 100     |
| $C_{cr,N}$        | Edge distance                          | [mm] | 84  | 90      | 104     | 172     |
| C <sub>min</sub>  | Minimum edge distance (one side fire)  | [mm] | 84  | 90      | 104     | 172     |
| C <sub>min</sub>  | Minimum edge distance (two sides fire) | [mm] | 300 | 300     | 300     | 300     |
| γMsp              | Partial safety factor*)                | [-]  | 1.0 | 1.0     | 1.0     | 1.0     |

<sup>\*)</sup> In absence of other national regulations
\*\*) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

| Concrete pry-out failure |    | SS 7.5 | SS 10.5 | SS 12.5 | SS 16.5           |
|--------------------------|----|--------|---------|---------|-------------------|
| k factor                 | [] | 1      | 1       | 1       | 2                 |
| A                        |    |        |         |         | 4 -   -   -   4 - |

According EN 1992-4:2018, these values of k factor and the relevant values of NRk,c,f given in the above tables have to be considered in the design.

#### Concrete edge failure

The characteristic resistance  $V^0_{RK,c,f_i}$  in C20/25 to C50/60 concrete is determined by:  $V^0_{RK,c,f_i}$  = 0.25 x  $V^0_{RK,c}$  ( $\leq$  R90) and  $V^0_{RK,c,f_i}$  = 0.20 x  $V^0_{RK,c}$  (R120)

With V<sup>0</sup>RK,c initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to EN 1992-4:2018.

| Sissy Stud concrete screw                              |          |
|--------------------------------------------------------|----------|
| Performances Characteristic values for fire resistance | Annex D2 |